Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.218
Filtrar
1.
J Phys Chem B ; 128(11): 2697-2706, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38447081

RESUMO

CLCF fluoride/proton antiporters move fluoride ions out of bacterial cells, leading to fluoride resistance in these bacteria. However, many details about their operating mechanisms remain unclear. Here, we report a combined quantum-mechanical/molecular-mechanical (QM/MM) study of a CLCF homologue from Enterococci casseliflavus (Eca), in accord with the previously proposed windmill mechanism. Our multiscale modeling sheds light on two critical steps in the transport cycle: (i) the external gating residue E118 pushing a fluoride in the external binding site into the extracellular vestibule and (ii) an incoming fluoride reconquering the external binding site by forcing out E118. Both steps feature competitions for the external binding site between the negatively charged carboxylate of E118 and the fluoride. Remarkably, the displaced E118 by fluoride accepts a proton from the nearby R117, initiating the next transport cycle. We also demonstrate the importance of accurate quantum descriptions of fluoride solvation. Our results provide clues to the mysterious E318 residue near the central binding site, suggesting that the transport activities are unlikely to be disrupted by the glutamate interacting with a well-solvated fluoride at the central binding site. This differs significantly from the structurally similar CLC chloride/proton antiporters, where a fluoride trapped deep in the hydrophobic pore causes the transporter to be locked down. A free-energy barrier of 10-15 kcal/mol was estimated via umbrella sampling for a fluoride ion traveling through the pore to repopulate the external binding site.


Assuntos
Antiporters , Prótons , Antiporters/química , Antiporters/metabolismo , Fluoretos/química , Modelos Moleculares , Proteínas de Membrana Transportadoras/metabolismo , Cloretos/química , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Transporte de Íons
2.
Environ Sci Technol ; 58(11): 5174-5185, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451543

RESUMO

Nanofiltration (NF) has the potential to achieve precise ion-ion separation at the subnanometer scale, which is necessary for resource recovery and a circular water economy. Fabricating NF membranes for selective ion separation is highly desirable but represents a substantial technical challenge. Dipole-dipole interaction is a mechanism of intermolecular attractions between polar molecules with a dipole moment due to uneven charge distribution, but such an interaction has not been leveraged to tune membrane structure and selectivity. Herein, we propose a novel strategy to achieve tunable surface charge of polyamide membrane by introducing polar solvent with a large dipole moment during interfacial polymerization, in which the dipole-dipole interaction with acyl chloride groups of trimesoyl chloride (TMC) can successfully intervene in the amidation reaction to alter the density of surface carboxyl groups in the polyamide selective layer. As a result, the prepared positively charged (PEI-TMC)-NH2 and negatively charged (PEI-TMC)-COOH composite membranes, which show similarly high water permeance, demonstrate highly selective separations of cations and anions in engineering applications, respectively. Our findings, for the first time, confirm that solvent-induced dipole-dipole interactions are able to alter the charge type and density of polyamide membranes and achieve tunable surface charge for selective and efficient ion separation.


Assuntos
Cloretos , Nylons , Cloretos/química , Nylons/química , Membranas Artificiais , Solventes , Água
3.
Dalton Trans ; 53(11): 4984-5000, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38406993

RESUMO

In this study, we present the synthesis, characterization and in vitro cytotoxicity of six organometallic [Ru(II)(η6-p-cymene)(N,N)Cl]Cl, [Rh(III)(η5-C5Me5)(N,N)Cl]Cl and [Re(I)(CO)3(N,N)Cl] complexes, in which the (N,N) ligands are sterane-based 2,2'-bipyridine derivatives (4-Me-bpy-St-OH, 4-Ph-bpy-St-OH). The solution chemical behavior of the ligands and the complexes was explored by UV-visible spectrophotometry and 1H NMR spectroscopy. The ligands and their Re(I) complexes are neutral at pH = 7.40; this contributes to their highly lipophilic character (log D7.40 > +3). The Ru(II) and Rh(III) half-sandwich complexes are much more hydrophilic, and this property is greatly affected by the actual chloride ion content of the medium. The half-sandwich Ru and Rh complexes are highly stable in 30% (v/v) DMSO/water (<5% dissociation at pH = 7.40); this is further increased in water. The Rh(III)(η5-C5Me5) complexes were characterized by higher water/chloride exchange and pKa constants compared to their Ru(II)(η6-p-cymene) counterparts. The Re(I)(CO)3 complexes are also stable in solution over a wide pH range (2-12) without the release of the bidentate ligand; only the chlorido co-ligand can be replaced with OH- at higher pH values. A comprehensive discussion of the binding affinity of the half-sandwich Ru(II) and Rh(III) complexes toward human serum albumin and calf-thymus DNA is also provided. The Ru(II)(η6-p-cymene) complexes interact with human serum albumin via intermolecular forces, while for the Rh(III)(η5-C5Me5) complexes the coordinative binding mode is suggested as well. They are also able to interact with calf-thymus DNA, most likely via the coordination of the guanine nitrogen. The Ru(II)(η6-p-cymene) complexes were found to be the most promising among the tested compounds as they exhibited moderate-to-strong cytotoxic activity (IC50 = 3-11 µM) in LNCaP as well as in PC3 prostate cells in an androgen receptor-independent manner. They were also significantly cytotoxic in breast and colon adenocarcinoma cancer cell lines and showed good selectivity for cancer cells.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Complexos de Coordenação , Cimenos , Compostos Organometálicos , Rutênio , Humanos , Complexos de Coordenação/química , Linhagem Celular Tumoral , Ligantes , Cloretos/química , Antineoplásicos/química , DNA/química , Albumina Sérica Humana , Água , Rutênio/farmacologia , Rutênio/química , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química
4.
Environ Toxicol Chem ; 43(1): 105-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818877

RESUMO

While metals are present in mixture in the environment, metal toxicity studies are usually conducted on an individual metal basis. There is a paucity of data in the existing literature regarding specific metal-metal interactions and their effect on metal toxicity and bioavailability. We studied interactions of a silver (Ag)-copper (Cu) mixture at the intestinal epithelium using an intestinal cell line derived from rainbow trout (Oncorhynchus mykiss), the RTgutGC. Exposures were conducted in media containing different chloride concentrations (low chloride, 1 mM; high chloride, 146 mM), thus resulting in different metal speciation. Cytotoxicity was evaluated based on two endpoints, cell metabolic activity and cell membrane integrity. The Ag-Cu mixture toxicity was assessed using two designs: independent action and concentration addition. Metal mixture bioavailability was studied by exposing cells to 500 nM of Ag or Cu as a single metal or a mixture (i.e., 500 nM of Cu plus 500 nM of Ag). We found an antagonistic effect in the low-chloride medium and an additive/synergistic effect in the high-chloride medium. We found that Cu dominates over Ag toxicity and bioavailability, indicating a competitive inhibition when both metals are present as free metal ions in the exposure media, which supports our hypothesis. Our study also suggests different mechanisms of uptake of free metal ions and metal complexes. The study adds valuable information to our understanding of the role of metal speciation on metal mixture toxicity and bioavailability. Environ Toxicol Chem 2024;43:105-114. © 2023 SETAC.


Assuntos
Cobre , Oncorhynchus mykiss , Prata , Poluentes Químicos da Água , Animais , Cloretos/química , Cobre/toxicidade , Mucosa Intestinal/metabolismo , Oncorhynchus mykiss/metabolismo , Prata/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Water Res ; 250: 121078, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159540

RESUMO

Disinfection is vital in ensuring water safety. However, the traditional chlorine disinfection process is prone to producing toxic and harmful disinfection by-products (DBPs). The combination of quaternary ammonium polymer and the chlorine disinfection process can solve this shortcoming. Currently, research on the control of DBPs through the combined process is not systematic and the control effect between reducing the dosage of disinfectants and DBPs remains to be studied. Quaternized cyclodextrin polymers have attracted increasing attention due to their excellent adsorption and antibacterial properties, but their synergistic effect with chlorine disinfection is still unclear. In this study, a magnetic quaternized cyclodextrin polymer (MQCDP) is synthesized in an ionic liquid green system, and a combined process of MQCDP treatment and chlorine disinfection is established. The disinfection performance of the combined process on the actual water body along with its reducing effect on the amount of chlorine disinfectant as well as the trihalomethanes (THMs) and haloacetic acids (HAAs) DBPs are explored. MQCDP has a porous structure with a specific surface area of 825 m2 g-1 and is easily magnetically separated. MQCDP can remove most of the natural organic matter (UV254 absorbance decreased by 97 %) in the water at the dosage of 1 g L-1 and kill bacteria with a sterilization rate of 85 %. Compared with disinfection using chlorine alone, the combined process has higher disinfection efficiency and significantly reduces the amount of disinfectant used. A concentration of 5 mg/L of NaClO was needed to meet the standard by chlorine disinfectant alone, while only 2 mg/L of NaClO can meet the standard for the combined process, indicating 60 % of the chlorine demand was reduced. More importantly, the combined process can significantly reduce the generation potential of DBPs. When 10 mg/L of NaClO is added, the THMs and HAAs generated by the combined process decreased by 65 % and 34 %, respectively, compared with the levels produced by single chlorine disinfection. The combined process can reduce the dosage of chlorine disinfectant and MQCDP can adsorb humic acid DBP precursors in raw water, thus lowering the generation of DBPs during disinfection. In summary, MQCDP has excellent separation and antibacterial ability, and its synergistic effects combined with the chlorine disinfection process are of great significance for controlling the amount of disinfectant and the formation potential of DBPs, which has potential applications in actual water treatment.


Assuntos
Celulose , Ciclodextrinas , Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Cloro/química , Desinfetantes/química , Cloretos/química , Halogenação , Trialometanos/química , Antibacterianos/farmacologia , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
6.
Pesqui. bras. odontopediatria clín. integr ; 24: e220128, 2024. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1535006

RESUMO

ABSTRACT Objective: To assess the effects of cobalt chloride (CoCl2) as a hypoxia mimicking agent on human umbilical cord mesenchymal stem cells (hUCMSCs) expression of HIF-1α and mTOR for use in regenerative dentistry. Material and Methods: Human umbilical cord mesenchymal stem cells were isolated and then cultured. The characteristics of stemness were screened and confirmed by flow cytometry. The experiment was conducted on hypoxia (H) and normoxia (N) groups. Each group was divided and incubated into 24-, 48-, and 72-hours observations. Hypoxic treatment was performed using 100 µM CoCl2 on 5th passage cells in a conventional incubator (37°C; 5CO2). Then, immunofluorescence of HIF-1α and mTOR was done. Data was analyzed statistically using One-way ANOVA and Tukey's HSD. Results: Significant differences were found between normoxic and hypoxic groups on HIF-1α (p=0.015) and mTOR (p=0.000) expressions. The highest HIF-1α expression was found at 48 hours in the hypoxia group, while for mTOR at 24 hours in the hypoxia group. Conclusion: Hypoxia using cobalt chloride was able to increase human umbilical cord mesenchymal stem cells expression of HIF-1α and mTOR.


Assuntos
Humanos , Cordão Umbilical/citologia , Cloretos/química , Cobalto/química , Células-Tronco Mesenquimais/citologia , Hipóxia/patologia , Análise de Variância , Citometria de Fluxo
7.
Org Biomol Chem ; 22(1): 114-119, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38050426

RESUMO

A molecular switch was developed to recognize and transport Cl- across lipid bilayers. The XRD-crystal structure and NOESY NMR spectra of a potent 4-aminoquinazoline analogue confirmed Cl--induced conformation changes. Systematic biophysical studies revealed that the quinazoline moiety forms cooperative interactions of H+ and Cl- ions with the thiourea moiety, resulting in the transport of H+/Cl- across the membranes. A pH-dependent analysis revealed that the transport of Cl- by the potent compound increased in an acidic environment. The potent compound could also transport H+/Cl- across Gram-positive bacteria, leading to antibacterial activities.


Assuntos
Cloretos , Bicamadas Lipídicas , Cloretos/química , Transporte de Íons , Bicamadas Lipídicas/química , Halogênios , Antibacterianos/farmacologia , Poder Psicológico
8.
Eur Phys J E Soft Matter ; 46(12): 119, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051398

RESUMO

It is well established that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) exhibit a reentrant condensation (RC) phase behavior in the presence of the trivalent hexamine cobalt(III) cations (Hac) which can be important for their packing and folding. A similar behavior can be observed for negatively charged globular proteins in the presence of trivalent metal cations, such as Y3+ or La3+. This phase behavior is mainly driven by charge inversion upon an increasing salt concentration for a fixed protein concentration (cp). However, as Hac exhibits structural differences compared to other multivalent metal cations, with six ammonia ligands (NH3) covalently bonded to the central cobalt atom, it is not clear that Hac can induce a similar phase behavior for proteins. In this work, we systematically investigate whether negatively charged globular proteins ß-lactoglobulin (BLG), bovine serum albumin (BSA), human serum albumin (HSA) and ovalbumin (OVA) feature Hac-induced RC. Effective protein-protein interactions were investigated by small-angle X-ray scattering. The reduced second virial coefficient (B2/B2HS) was obtained as a function of salt concentration. The virial coefficient analysis performed confirms the reentrant interaction (RI) behavior for BLG without actually inducing RC, given the insufficient strengths of the interactions for the latter to occur. In contrast, the strength of attraction for BSA, HSA and OVA are too weak to show RC. Model free analysis of the inverse intensity [Formula: see text] also supports this finding. Looking at different q-range by employing static (SLS) and dynamic light scattering experiments, the presence of RI behavior can be confirmed. The results are further discussed in view of metal cation binding sites in nucleic acids (DNA and RNA), where Hac induced RC phase behavior.


Assuntos
Cloretos , Cobalto , Humanos , Cloretos/química , Metenamina , Soroalbumina Bovina/química , Cátions/química , DNA , RNA , Soluções/química
9.
Inorg Chem ; 62(44): 18322-18330, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37885054

RESUMO

Chlorite dismutase (Cld) is a crucial enzyme that catalyzes the decomposition of chlorite ions into chloride ions (Cl-) and molecular oxygen (O2). Despite playing an important role in the detoxification of toxic chlorite ions, the mechanism of cleavage of the Cl-O bond by Cld remains highly debatable. The present study highlights the mechanism of such Cl-O bond cleavage in Cld using sophisticated computational tools such as hybrid quantum mechanical/molecular mechanical calculations and long-time scale molecular dynamics simulations. Here, we show that Cld forms a high spin ferric hexacoordinated substrate adduct in the presence of a chlorite ion, which subsequently reduces to a ferrous state. Our study shows a stepwise pathway with the homolytic cleavage of the Cl-O bond that produces a high spin Fe(III)-OH species and a diradicaloid species formed by the combination of a chlorine-based ClO• radical and a protein-based tyrosine118• radical. The findings provide significant insights into Cl-O bond cleavage and O2 formation which shows a crucial role of the tyrosine118 during the electron transfer process.


Assuntos
Cloretos , Heme , Cloretos/química , Heme/química , Compostos Férricos , Elétrons , Oxigênio/química
10.
PLoS One ; 18(8): e0289534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561805

RESUMO

With the spread of coronavirus infections, the demand for disinfectants, such as a sodium chlorite solution, has increased worldwide. Sodium chlorite solution is a food additive and is used in a wide range of applications. There is evidence that chlorous acid or sodium chlorite is effective against various bacteria, but the actual mechanism is not well understood. One reason for this is that the composition of chlorine-based compounds contained in sodium chlorite solutions has not been clearly elucidated. The composition can vary greatly with pH. In addition, the conventional iodometric titration method, the N,N-diethyl-p-phenylenediamine sulfate (DPD) method and the absorption photometric method cannot clarify the composition. In this study, we attempted to elucidate the composition of a sodium chlorite solution using absorption spectrophotometry and ion chromatography (IC). IC is excellent for qualitative and quantitative analysis of trace ions. Through this, we aimed to develop an evaluation method that allows anyone to easily determine the bactericidal power of sodium chlorite. We found that commercially available sodium chlorite solution is 80% pure, with the remaining 20% potentially containing sodium hypochlorite solution. In addition, when sodium chlorite solution became acidified, its absorption spectrum exhibited a peak at 365 nm. Sodium chlorite solution is normally alkaline, and it cannot be measured by the DPD method, which is only applicable under acidic conditions. The presence of a peak at 365 nm indicates that the acidic sodium chlorite solution contains species with oxidizing power. On the other hand, the IC analysis showed a gradual decrease in chlorite ions in the acidic sodium chlorite solution. These results indicate that chlorite ions may not react with this DPD reagent, and other oxidizing species may be present in the acidic sodium chlorite solution. In summary, when a sodium chlorite solution becomes acidic, chlorine-based oxidizing species produce an absorption peak at 365 nm. Sodium hypochlorite and sodium chlorite solutions have completely different IC peak profiles. Although there are still many problems to be solved, we believe that the use of IC will facilitate the elucidation of the composition of sodium chlorite solution and its sterilization mechanism.


Assuntos
Compostos Clorados , Hipoclorito de Sódio , Cloro , Cloretos/química , Cromatografia
11.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511075

RESUMO

Our research area is related to the spiropyrazolinium-containingcompounds, which are insufficiently studied compared with pyrazoline-containing compounds. Nitrogen-containing azoniaspiromolecules have also been well studied. In drug design and other areas, they are a priori important structures, since rigid spirocyclic scaffolds with the reduced conformational entropy are able to organize a closely spaced area. Azoniaspirostructures are currently of wide practical interest as ionic liquids, current sources (membranes), structure-directing agents in organocatalysis, and in the synthesis of ordered ceramics. Our goal was the synthesis of 2-aminospiropyrazolilammonium chlorides and hexafluorophosphates. Our methodology is based on the tosylation of ß-aminopropioamidoximes with six-membered N-heterocycles (piperidine, morpholine, thiomorpholine, and phenylpiperazine) at the ß-position. 2-Aminospiropyrazolilammonium chlorides and hexafluorophosphates were obtained by the reaction of double ion substitution in the reaction of toluenesulfonates of 2-aminospiropyrazolinium compounds with an ethereal solution of HCl in ethanol and with ammonium hexafluorophosphate in ethanol in quantitative yields of 55-97%. The physicochemical characteristics of the synthesized compounds and their IR and NMR spectra are presented. The obtained salts were additionally characterized by the single-crystal XRD analysis. The presence of both axial and equatorial conformations of spirocations in solids was confirmed. 2-Aminospiropyrazolilammonium chlorides and hexafluorophosphates have weak in vitro antimicrobial activity on Gram-positive and Gram-negative bacterial lines.


Assuntos
Cloretos , Etanol , Ciclização , Cloretos/química , Troca Iônica , Conformação Molecular
12.
Environ Sci Technol ; 57(25): 9376-9384, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37319326

RESUMO

Green rust (GR), a layered double hydroxide (LDH) containing Fe, and magnetite can be found in natural and engineered environments. The ability of chloride GR (GR-Cl) and magnetite to retain iodide as a function of various parameters was investigated. Sorption equilibrium is achieved within 1 day of contact time between iodide and preformed GR-Cl in suspension. pHm variations (7.5-8.5) have no significant influence, but the iodide sorption decreases with increasing ionic strength set by NaCl. Sorption isotherms of iodide suggest that the uptake operates via ionic exchange (IC), which is supported by geochemical modeling. The short-range binding environment of iodide associated with GR is comparable to that of hydrated aqueous iodide ions in solution and is not affected by pHm or ionic strength. This finding hints at an electrostatic interaction with the Fe octahedral sheet, consistent with weak binding of charge balancing anions within an LDH interlayer. The presence of sulfate anions in significant amounts inhibits the iodide uptake due to recrystallization to a different crystal structure. Finally, the transformation of iodide-bearing GR-Cl into magnetite and ferrous hydroxide resulted in a quantitative release of iodide into the aqueous phase, suggesting that neither transformation product has an affinity for this anionic species.


Assuntos
Cloretos , Óxido Ferroso-Férrico , Óxido Ferroso-Férrico/química , Cloretos/química , Iodetos , Hidróxidos
13.
Chem Commun (Camb) ; 59(54): 8460-8463, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37337864

RESUMO

Chloride is a vital ion for all forms of life. Protein-based fluorescent biosensors can enable researchers to visualize chloride in cells but remain underdeveloped. Here, we demonstrate how a single point mutation in an engineered microbial rhodopsin results in ChloRED-1-CFP. This membrane-bound host is a far-red emitting, ratiometric sensor that provides a reversible readout of chloride in live bacteria at physiological pH, setting the stage to investigate the roles of chloride in diverse biological contexts.


Assuntos
Rodopsina , Concentração de Íons de Hidrogênio , Rodopsina/química , Cor , Cloretos/química , Modelos Moleculares , Estrutura Terciária de Proteína
14.
Sci Rep ; 13(1): 9426, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296212

RESUMO

The relationships between the structural and aggregational state of bovine serum albumin (BSA) and the specific length and total number of zigzag pattern segments of the film textures formed upon drying biopolymer solutions with aluminum and iron chlorides have been shown. To obtain films, saline solutions of BSA were dried in a glass cuvette under thermostatically controlled conditions. It is shown that the formation of zigzag structures is sensitive to the influence of aluminum chlorides Al3+ and iron chlorides Fe3+ and depend on the concentration of AlCl3 and FeCl3. This may be due to a change in the charge and size of BSA particles and due to a change in conformation or a violation of the structure of BSA. These factors, in turn, affect the hydration of the solution components and the structural state of free water in solution, which presumably also affects the formation of zigzag structures. It is established that the analysis of the specific length and the number of segments of zigzag patterns makes it possible to evaluate changes in the state of biopolymers in the initial solution during structural changes and aggregation.


Assuntos
Alumínio , Cloretos , Alumínio/química , Cloretos/química , Soroalbumina Bovina/química , Ferro , Soluções
15.
J Am Chem Soc ; 145(19): 10721-10729, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37155337

RESUMO

DNA-stabilized silver nanoclusters (AgN-DNAs) are known to have one or two DNA oligomer ligands per nanocluster. Here, we present the first evidence that AgN-DNA species can possess additional chloride ligands that lead to increased stability in biologically relevant concentrations of chloride. Mass spectrometry of five chromatographically isolated near-infrared (NIR)-emissive AgN-DNA species with previously reported X-ray crystal structures determines their molecular formulas to be (DNA)2[Ag16Cl2]8+. Chloride ligands can be exchanged for bromides, which red-shift the optical spectra of these emitters. Density functional theory (DFT) calculations of the 6-electron nanocluster show that the two newly identified chloride ligands were previously assigned as low-occupancy silvers by X-ray crystallography. DFT also confirms the stability of chloride in the crystallographic structure, yields qualitative agreement between computed and measured UV-vis absorption spectra, and provides interpretation of the 35Cl-nuclear magnetic resonance spectrum of (DNA)2[Ag16Cl2]8+. A reanalysis of the X-ray crystal structure confirms that the two previously assigned low-occupancy silvers are, in fact, chlorides, yielding (DNA)2[Ag16Cl2]8+. Using the unusual stability of (DNA)2[Ag16Cl2]8+ in biologically relevant saline solutions as a possible indicator of other chloride-containing AgN-DNAs, we identified an additional AgN-DNA with a chloride ligand by high-throughput screening. Inclusion of chlorides on AgN-DNAs presents a promising new route to expand the diversity of AgN-DNA structure-property relationships and to imbue these emitters with favorable stability for biophotonics applications.


Assuntos
Cloretos , Prata , Cloretos/química , Prata/química , Ligantes , Cristalografia por Raios X , DNA/química
16.
Environ Sci Pollut Res Int ; 30(28): 72368-72388, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37166731

RESUMO

COVID-19 has affected all aspects of human life so far. From the outset of the pandemic, preventing the spread of COVID-19 through the observance of health protocols, especially the use of sanitizers and disinfectants was given more attention. Despite the effectiveness of disinfection chemicals in controlling and preventing COVID-19, there are critical concerns about their adverse effects on human health. This study aims to assess the health effects of sanitizers and disinfectants on a global scale. A total of 91,056 participants from 154 countries participated in this cross-sectional study. Information on the use of sanitizers and disinfectants and health was collected using an electronic questionnaire, which was translated into 26 languages via web-based platforms. The findings of this study suggest that detergents, alcohol-based substances, and chlorinated compounds emerged as the most prevalent chemical agents compared to other sanitizers and disinfectants examined. Most frequently reported health issues include skin effects and respiratory effects. The Chi-square test showed a significant association between chlorinated compounds (sodium hypochlorite and per-chlorine) with all possible health effects under investigation (p-value <0.001). Examination of risk factors based on multivariate logistic regression analysis showed that alcohols and alcohols-based materials were associated with skin effects (OR, 1.98; 95%CI, 1.87-2.09), per-chlorine was associated with eye effects (OR, 1.83; 95%CI, 1.74-1.93), and highly likely with itching and throat irritation (OR, 2.00; 95%CI, 1.90-2.11). Furthermore, formaldehyde was associated with a higher prevalence of neurological effects (OR, 2.17; 95%CI, 1.92-2.44). Furthermore, formaldehyde was associated with a higher prevalence of neurological effects (OR, 2.17; 95%CI, 1.92-2.44). The use of sodium hypochlorite and per-chlorine also had a high chance of having respiratory effects. The findings of the current study suggest that health authorities need to implement more awareness programs about the side effects of using sanitizers and disinfectants during viral epidemics especially when they are used or overused.


Assuntos
COVID-19 , Desinfetantes , Humanos , Desinfetantes/química , Hipoclorito de Sódio/química , Pandemias/prevenção & controle , Cloro , Estudos Transversais , Cloretos/química , Formaldeído , Álcoois , Inquéritos e Questionários
17.
Environ Sci Pollut Res Int ; 30(26): 69473-69485, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37140864

RESUMO

Removing ammonia from black water is one of the most urgent issues before it can be recycled as flushing water. In this study, an electrochemical oxidation (EO) process with commercial Ti/IrO2-RuO2 anodes to treat black water could remove 100% of different concentrations of ammonia by adjusting the dosage of chloride. Through the relationship between ammonia, chloride, and corresponding the pseudo-first-order degradation rate constant (Kobs), we could determine the chloride dosage and predict the kinetics of ammonia oxidation based on initial ammonia concentration in black water. The optimal N/Cl molar ratio was 1:1.8. The difference between black water and the model solution in terms of ammonia removal efficiency and oxidation products was explored. A higher chloride dosage was beneficial for removing ammonia and shortening the treatment cycle, but it also led to the generation of toxic by-products. Especially HClO and ClO3- generated in black water were 1.2 and 1.5 times more than the synthesized model solution under 40 mA cm-2. Through SEM characterization of electrodes and repeated experiments, the electrodes always maintained a high treatment efficiency. These results demonstrated the potential of the electrochemical process as a treatment method for black water.


Assuntos
Cloro , Poluentes Químicos da Água , Cloro/química , Cloretos/química , Amônia/química , Oxirredução , Eletrodos , Poluentes Químicos da Água/química
18.
J Phys Chem B ; 127(21): 4775-4782, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201188

RESUMO

Chloride transport by microbial rhodopsins is actively being researched to understand how light energy is converted to drive ion pumping across cell membranes. Chloride pumps have been identified in archaea and eubacteria, and there are similarities and differences in the active site structures between these groups. Thus, it has not been clarified whether a common mechanism underlies the ion pump processes for all chloride-pumping rhodopsins. Here, we applied Raman optical activity (ROA) spectroscopy to two chloride pumps, Nonlabens marinus rhodopsin-3 (NM-R3) and halorhodopsin from the cyanobacterium Mastigocladopsis repens (MrHR). ROA is a vibrational spectroscopy that provides chiral sensitivity, and the sign of ROA signals can reveal twisting of cofactor molecules within proteins. Our ROA analysis revealed that the retinal Schiff base NH group orients toward the C helix and forms a direct hydrogen bond with a nearby chloride ion in NM-R3. In contrast, MrHR is suggested to contain two retinal conformations twisted in opposite directions; one conformation has a hydrogen bond with a chloride ion like NM-R3, while the other forms a hydrogen bond with a water molecule anchored by a G helix residue. These results suggest a general pump mechanism in which the chloride ion is "dragged" by the flipping Schiff base NH group upon photoisomerization.


Assuntos
Cloretos , Rodopsina , Rodopsina/química , Cloretos/química , Bases de Schiff , Rotação Ocular , Rodopsinas Microbianas/metabolismo , Bombas de Íon , Luz
19.
Angew Chem Int Ed Engl ; 62(26): e202303487, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042950

RESUMO

Mixed-anion compounds widen the chemical space of attainable materials compared to single anionic compounds, but the exploration of their structural diversity is limited by common synthetic paths. Especially, oxychlorides rely mainly on layered structures, which suffer from low stability during photo(electro)catalytic processes. Herein we report a strategy to design a new polar 3D tetrahedral framework with composition Zn4 Si2 O7 Cl2 . We use a molten salt medium to enable low temperature crystallization of nanowires of this new compound, by relying on tetrahedral building units present in the melt to build the connectivity of the oxychloride. These units are combined with silicon-based connectors from a non-oxidic Zintl phase to enable precise tuning of the oxygen content. This structure brings high chemical and thermal stability, as well as strongly anisotropic hole mobility along the polar axis. These features, associated with the ability to adjust the transport properties by doping, enable to tune water splitting properties for photoelectrocatalytic H2 evolution and water oxidation. This work then paves the way to a new family of mixed-anion solids.


Assuntos
Nanoestruturas , Cloreto de Sódio/química , Ânions/química , Nanoestruturas/química , Zinco/química , Dióxido de Silício/química , Cloretos/química , Catálise , Eletroquímica/métodos
20.
Chem Asian J ; 18(12): e202300277, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088720

RESUMO

A simple method for the synthesis of cyclopropane compounds via cross-coupling reaction between tertiary cyclopropyl carbagermatranes and acyl chlorides was reported. Derivatives of acryloyl chloride and aliphatic acyl chloride also performed to be suitable substrates. This process can be used to introduce a wide range of functionalized cyclopropane groups and acyl groups directly.


Assuntos
Cloretos , Paládio , Cloretos/química , Paládio/química , Catálise , Ciclopropanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...